PRE-Klenz™ Instrument Transport Gel

Proof of Performance
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Data Sheet</td>
<td>2</td>
</tr>
<tr>
<td>Rinsability Study</td>
<td>4</td>
</tr>
<tr>
<td>Substrate Compatibility</td>
<td>5</td>
</tr>
<tr>
<td>Pharmacopeia (USP) Preservative Effectiveness Testing</td>
<td>7</td>
</tr>
<tr>
<td>Substrate Compatibility with Endoscope Parts</td>
<td>8</td>
</tr>
<tr>
<td>The Effect of PRE-Klenz™ Instrument Transport Gel on Instrument Protection</td>
<td>10</td>
</tr>
<tr>
<td>Efficacy Comparison</td>
<td>12</td>
</tr>
<tr>
<td>MSDS</td>
<td>14</td>
</tr>
</tbody>
</table>
GENERAL DESCRIPTION

PRE-Klenz Instrument Transport Gel combines a surfactant-based gel with corrosion inhibitors to begin the cleaning process at the point of use, maintain moisture during transport and protect the instrument surface. By utilizing a gel technology, PRE-Klenz Instrument Transport Gel clings to instrument surfaces without adding significant weight to instruments during transport. PRE-Klenz Instrument Transport Gel reduces exposure risk to employees who process surgical instruments by decreasing the incidence of spilling associated with liquid presoaks. PRE-Klenz Instrument Transport Gel is compatible with materials commonly used in the manufacture of surgical instruments.

FEATURES BENEFITS

Clear gel Clings to instruments to maintain moisture during transport. Soiled sharps are visible through gel. Significantly reduces tray weight during transport compared to liquid and reduces potential for exposure due to spilling of liquid.

Ready-to-use Cleaning may be initiated at point of use without mixing

Does not contain dyes Will not stain instruments or equipment

Contains corrosion inhibitors Will not harm aluminum and other soft metals

Contains a surfactant Begins cleaning process at point of use

Free-rinsing Rinses freely and completely

Neutral pH Broad-material compatibility

Appealing fragrance Pleasant to use

TYPICAL PROPERTIES

Form... Ready-to-use sprayable gel
Color .. Light straw
Fragrance .. Citrus floral
Typical pH ... 7.0
Typical specific gravity ... 1.029
Corrosion inhibitors ... Yes
Surfactant ... Yes

DIRECTIONS FOR USE

PRE-Klenz Instrument Transport Gel is a ready-to-use product. Spray evenly over surgical tray to ensure soils are evenly covered. Transport tray for further processing. There is no need to rinse the product prior to automated processing.

PLEASE NOTE: PRE-Klenz Instrument Transport Gel would not be considered hazardous or irritating according to OSHA regulations; however, personal protective equipment should be worn in accordance with OSHA bloodborne pathogen regulations when handling soiled instruments.
STORAGE

Do not expose to extreme temperatures.

SERVICE

Sales

Service is one of the most important ways to verify consistent quality of the facility’s performance and operation. A tailored service program by STERIS provides effective, trouble-free operations.

Technical

Contact STERIS for information regarding product applications, the product in general or copies of Material Safety Data Sheets (MSDS). For additional information, call STERIS’s St. Louis operations regulatory affairs group at 314-535-1395.

For further information, please contact:

STERIS Corporation
5960 Heisley Road
Mentor, OH 44060-1834 • USA
440-354-2600 • 800-548-4873
www.steris.com
PRE-KLENS™ INSTRUMENT TRANSPORT GEL RINSIBILITY STUDY

PURPOSE
PRE-Klenz Instrument Transport Gel is a ready-to-use neutral pH gel designed to keep surgical soil on reusable surgical instruments moist prior to decontamination in an automated washer. Coupon surfaces composed of 304 stainless steel were used to simulate the surfaces of surgical scissors to demonstrate the rinsibility of PRE-Klenz Instrument Transport Gel after exaggerated use-conditions, followed by a complete wash cycle in AMSCO Reliance® 444 Washer/Disinfector.

METHODS
The 304 stainless-steel coupons (3 x 1") were used as simulated surfaces for reusable surgical instruments. PRE-Klenz Instrument Transport Gel was applied on the coupon surfaces and allowed to dry. These coupons were then installed in the AMSCO Reliance 444 Washer/Disinfector chamber to be washed. To support the rinsibility of the product from these surfaces, the surfaces of the coupons were analyzed for any product remaining at the conclusion of the wash run. To evaluate the coupon surfaces directly and to detect product at very low levels, a Fourier Transform Infrared (FTIR) spectrometer was utilized. For this method, the Limit of Detection (LOD) and Limit of Quantitation (LOQ) were experimentally determined to be 40 and 294 μg/cm² respectively. The process of applying the product, drying and washing was repeated six times and the coupons were analyzed by an FTIR spectrometer to determine the rinsibility of the product.

RESULTS

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Amount Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>After one treatment</td>
<td>No PRE-Klenz Instrument Transport Gel detected</td>
</tr>
<tr>
<td>After six treatments</td>
<td>No PRE-Klenz Instrument Transport Gel detected</td>
</tr>
</tbody>
</table>

CONCLUSION
The results show that after exaggerated use-conditions including repeated applications, PRE-Klenz Instrument Transport Gel is readily rinsed from stainless-steel surfaces and is considered free-rinsing.

References
1. Research and Development Notebook number 5750:66.
2. Research and Development Notebook number 5736:54-55, 57-59.

For further information, please contact:

STERIS Corporation
5960 Heisley Road
Mentor, OH 44060-1834 • USA
440-354-2600 • 800-548-4873
www.steris.com
PRE-KLENZ™ INSTRUMENT TRANSPORT GEL SUBSTRATE COMPATIBILITY

PURPOSE
PRE-Klenz Instrument Transport Gel is a ready-to-use neutral pH gel designed to keep surgical soil on reusable surgical instruments moist prior to decontamination in an automated washer. The purpose of this study was to determine the compatibility of PRE-Klenz Instrument Transport Gel with a variety of substrates, such as metals and plastics, commonly used in the manufacture of surgical instruments.

METHODS
Plastics
Substrate compatibility testing was conducted on 15 plastic substrates. Coupons representing these substrates were subjected to static immersion in PRE-Klenz Instrument Transport Gel for 72 hours at room temperature. The coupons were then cleaned, dried, and weighed. The coupons were examined for physical changes (hazing, cracking, blistering, tackiness, and swelling) and were evaluated for weight gain or loss. Coupons were also exposed to tap water as controls under the same test conditions. In a parallel experiment, PRE-Klenz Instrument Transport Gel was applied to uniformly cover the surface of the coupons and allowed to stand for 72 hours to dry. After drying, the coupons were cleaned with tap water, dried and examined.

Metals
PRE-Klenz Instrument Transport Gel was also tested for compatibility with nine metallic substrates. Coupons representing these substrates were evaluated by determining the corrosion rate. The corrosion rate is expressed as mils per year (mpy) based on weight loss, after 72 hours of static immersion in PRE-Klenz Instrument Transport Gel, and in tap water at room temperature. The coupons were then visually examined for any signs of corrosion or pitting. In a parallel experiment, PRE-Klenz Instrument Transport Gel was applied to uniformly cover the surface of the coupons and allowed to stand for 72 hours to dry. After drying, the coupons were cleaned with tap water, dried and examined.

RESULTS
Plastics
Under static immersion conditions in PRE-Klenz Instrument Transport Gel, all substrates gave a weight gain or loss comparable to that observed in tap water only. No changes in the physical appearance or integrity of the coupons under both static immersion and dried-on conditions were observed following exposure to PRE-Klenz Instrument Transport Gel.

PRE-Klenz Instrument Transport Gel is compatible with the following substrates:

- Acrylic
- Acrylonitrile-Butadiene-Styrene (ABS)
- Buna-Nitrogen (Buna-N)
- Butyl Rubber
- Fluoroelastomer (Viton®1)
- Fluoropolymer (Teflon®1)
- Polycarbonate (Lexan®2)
- Nylon
- Polychloroprene (Neoprene)
- High Density Polyethylene (HDPE)
- Low Density Polyethylene (LDPE)
- Polypropylene
- Polyurethane
- Polyvinyl Chloride (PVC)
- Silicone Rubber

Metals
Visual inspection of the coupons revealed no changes in physical appearance of the coupons under static immersion conditions in PRE-Klenz Instrument Transport Gel. However, the tap water controls did show some color changes for soft metals. All of the metal coupons tested in PRE-Klenz Instrument Transport Gel had a corrosion rate of less than 1 mpy.

1. Viton® and Teflon® are registered trademarks of E.I. duPont de Nemours and Company.
2. Lexan® is a registered trademark of SABIC Innovative Plastics IP B.V. Company.
PRE-Klenz Instrument Transport Gel is compatible with the following metallic substrates:

- Aluminum (AL 1100)
- Anodized Aluminum (AL 1100AN)
- Brass (CDA 443)
- Copper (CDA 110)
- Stainless Steel 316

- Stainless Steel 416
- Titanium Alloy (Ti Gr5 6Al, 4V)
- Gold Plated (0.00003 inch) 304 Stainless Steel

72-Hour Dried-On Exposure

When the gel was applied to cover the metallic coupon surface and allowed to stand for 72 hours, the subsequent cleaning of the coupons did not reveal any changes in the appearance of the coupons. PRE-Klenz Instrument Transport Gel is compatible for 72 hours of continuous exposure.

CONCLUSION

PRE-Klenz Instrument Transport Gel is compatible with all of the plastic and metal substrates tested under extended exposure conditions, and under wet and dried-on conditions.

References

1. Research and Development Notebook number 5750:54-57; 5912:15-18.
LABORATORY REPORT

PRE-KLENZ™ INSTRUMENT TRANSPORT GEL UNITED STATES
PHARMACOPEIA (USP) PRESERVATIVE EFFECTIVENESS TESTING

PURPOSE
The purpose of this test was to evaluate the preservative efficacy of PRE-Klenz Instrument Transport Gel. Testing was conducted using the USP XXIV <51> Antimicrobial Preservatives Effectiveness Test.

METHODS
In this study, 0.1 mL of a suspension of test organism was added to a 20-mL aliquot of PRE-Klenz Instrument Transport Gel in a sterile jar and mixed thoroughly. Immediately after inoculation and at 7, 14 and 28 days after inoculation, a sample of product was removed and the number of viable organisms remaining per mL were determined by the plate count method.

RESULTS
The USP preservative effectiveness protocol requires that the concentrations of viable bacteria are reduced to not more than 2.0 log reduction of the initial concentrations at the fourteenth day. It is also required that the concentrations of viable yeasts and molds remain at or below the initial concentrations during the first 14 days and the concentration of each test organism remains at or below these designated levels during the remainder of the 28-day test period.

<table>
<thead>
<tr>
<th>Organism</th>
<th>ATTC #</th>
<th>Inoculum Colony Forming Units CFU/mL</th>
<th>CFU/mL at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Day 7</td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>16404</td>
<td>1.5 x 10^5</td>
<td>< 100</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>10231</td>
<td>4.1 x 10^5</td>
<td>< 10</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>8739</td>
<td>6.4 x 10^5</td>
<td>< 10</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>9027</td>
<td>3.4 x 10^5</td>
<td>< 10</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>6538</td>
<td>6.7 x 10^5</td>
<td>< 10</td>
</tr>
</tbody>
</table>

CONCLUSION
The results of the preservative effectiveness testing of PRE-Klenz Instrument Transport Gel show it is an adequately preserved product as defined by this standard assay. The counts of Candida albicans, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus were <10 by Day 7 of the test and remained at <10 for the remainder of the test period. The counts of Aspergillus niger were well below the initial levels by Day 7 and remained below initial levels by Day 28. These levels are well below the allowable levels for the test, confirming the preservative effectiveness of PRE-Klenz Instrument Transport Gel.

For further information, please contact:

STERIS Corporation
5960 Heisley Road
Mentor, OH 44060-1834 • USA
440-354-2600 • 800-548-4873
www.steris.com

©2013, STERIS Corporation. All rights reserved. (02/01/13)
PRE-KLENZ™ INSTRUMENT TRANSPORT GEL SUBSTRATE COMPATIBILITY WITH ENDOSCOPE PARTS

PURPOSE

PRE-Klenz Instrument Transport Gel is designed to keep organic soil moist on reusable medical equipment such as flexible and rigid endoscopes and surgical instruments prior to decontamination. The purpose of this study was to determine the compatibility of PRE-Klenz Instrument Transport Gel with various endoscope parts. The scope of this study was limited to materials compatibility.

METHODS

Static Immersion

Substrate compatibility testing was conducted on various endoscope parts that were comprised of metal and/or non-metal substrates. The endoscope parts were subjected to static immersion in PRE-Klenz Instrument Transport Gel for 72 hours at ambient room temperature. At the completion of the testing, the endoscope parts were cleaned and patted dry. The coupons were allowed to air dry for 24 hours and were weighed. The endoscope parts were examined for physical changes such as discoloration, clouding, bubbling, cracking, tackiness and swelling. Metal parts were examined for corrosion. The endoscope parts were also evaluated for weight gain or loss.

72-Hour Dried Exposure

In separate testing, PRE-Klenz Instrument Transport Gel was applied to cover all surfaces of the endoscope parts and allowed to dry on the surfaces for 72 hours. At the end of the testing, the parts were cleaned and examined for changes in appearance as described in the static immersion section under Methods.

RESULTS

Under static immersion test conditions, the weight loss/gain was found to be less that 1% for all of the endoscope parts tested. There were no physical changes in appearance or integrity of the endoscope parts under both static immersion and dried conditions with PRE-Klenz Instrument Transport Gel. PRE-Klenz Instrument Transport Gel is compatible with the following endoscope parts that are comprised of metal and/or non-metal substrates:

<table>
<thead>
<tr>
<th>Endoscope Part</th>
<th>Metal</th>
<th>Endoscope Part</th>
<th>Non-Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screws</td>
<td>Stainless Steel</td>
<td>O-rings</td>
<td>Buna-Nitrogen, 55 Durometer</td>
</tr>
<tr>
<td>Boot Extenders</td>
<td>Anodized Aluminum</td>
<td>Bending Rubber</td>
<td>Silicone Rubber</td>
</tr>
<tr>
<td>Control Body Grip</td>
<td>Brass or Copper Ring</td>
<td>Switch Head Buttons</td>
<td>Silicone Rubber</td>
</tr>
<tr>
<td>Control Body Grip</td>
<td></td>
<td>Bending Rubber</td>
<td>Fluoroelastomer (Viton®1)</td>
</tr>
<tr>
<td>Control Body Grip</td>
<td></td>
<td>Suction Channel</td>
<td>Fluoropolymer (Teflon®1)</td>
</tr>
<tr>
<td>Biopsy Channel</td>
<td></td>
<td>Biopsy Channel</td>
<td>Polytetrafluoroethylene</td>
</tr>
<tr>
<td>C-covers</td>
<td></td>
<td>C-covers</td>
<td>Polyetherimide (Ultem®2)</td>
</tr>
</tbody>
</table>

1. Viton® and Teflon® are registered trademarks of E.I. duPont de Nemours and Company.
2. Ultem® is a registered trademark of SABIC Innovative Plastics IP B.V. Company.
<table>
<thead>
<tr>
<th>Endoscope Part</th>
<th>Metal and Non-Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEM Insertion Tube</td>
<td>Polyurethane, Steel, Brass</td>
</tr>
<tr>
<td>Distal Lens</td>
<td>Glass</td>
</tr>
</tbody>
</table>

CONCLUSION

PRE-Klenz Instrument Transport Gel was found to be compatible with all of the endoscope parts tested under extended exposure conditions and under both wet and dried conditions.

References

THE EFFECT OF PRE-KLENZ™ INSTRUMENT TRANSPORT GEL ON INSTRUMENT PROTECTION

PURPOSE

Surgical instruments represent a large investment to healthcare facilities. Healthcare Customers expect the instruments to perform in an optimal manner each time that they are used and to have a long life. High quality products that are used for cleaning surgical instruments will contribute to the protection of these highly valued pieces of equipment.

The purpose of this study was to evaluate the instrument protection capability of PRE-Klenz Instrument Transport Gel, a ready-to-use neutral pH transport gel used to keep organic soil moist on reusable medical equipment.

METHODS

The instruments used in the study were STORZ® Brown dissecting scissors¹ and Fisherbrand® operating scissors². PRE-Klenz Instrument Transport Gel was used undiluted. Both tap water (120 ppm total hardness) and hard water (400 ppm total hardness) were used as controls in the study. The study was eight weeks in duration.

The scissors were immersed into 32-ounce glass jars containing either undiluted PRE-Klenz Instrument Transport Gel or the water controls at room temperature. The scissors were observed daily for the first week and then once a week for the remaining seven weeks.

RESULTS

Corrosion was not observed on either of the scissors immersed in PRE-Klenz Instrument Transport Gel.

<table>
<thead>
<tr>
<th>Sample</th>
<th>STORZ Scissors (8 weeks)</th>
<th>Fisherbrand Scissors (8 weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE-Klenz Instrument Transport Gel No dilution</td>
<td>No change in appearance</td>
<td>No change in appearance</td>
</tr>
<tr>
<td>Tap Water Control</td>
<td>Corrosion on the screws appeared during Week 2</td>
<td>Corrosion on the screw and box lock area by Day 2</td>
</tr>
<tr>
<td>Hard Water Control</td>
<td>Corrosion on the box lock area appeared by Day 2</td>
<td>Corrosion at the box lock area by Day 2</td>
</tr>
</tbody>
</table>

CONCLUSION

Under the test conditions described in this report, PRE-Klenz Instrument Transport Gel demonstrated instrument protection on both STORZ and Fisherbrand scissors.

Note: The tests described in this document were conducted by STERIS Corporation in August and October 2002 and in accordance with the procedures and methods described in this Laboratory Report. STERIS makes no representation or warranty that comparable results would be obtained after the testing dates. The reasons for such deviation could include, without limitation, (i) any modification to any product as it existed on the testing date or (ii) the use of testing procedures or methods different from those described in this Laboratory Report.

¹. STORZ® is a registered trademark of Bausch & Lomb Inc.
². Fisherbrand® is a registered trademark of Fisher Scientific Company L.L.C.
References:
Product Development Notebook number 5915: 93.
Product Development Notebook number 5922: 64-66.
PRE-KLENZ™ INSTRUMENT TRANSPORT GEL EFFICACY COMPARISON

PURPOSE
PRE-Klenz Instrument Transport Gel is a surfactant-based gel combined with corrosion inhibitors. The cleaning of surgical instruments is initiated at point of use without damaging the surfaces of instruments. The purpose of this study was to compare the cleaning properties of PRE-Klenz Instrument Transport Gel to the cleaning properties of competitive products.

MATERIALS
The following products were tested along with PRE-Klenz Instrument Transport Gel:

- Prepzyme® Foam Spray Cleaner¹, Lot No. 91BB 93859
- Instra-Clean Instrument Detergent, Lot No. 61482
- ProEZ Foam™ Foaming Enzymatic Spray², Lot No. 0007374

METHODS
A gravimetric method was used to conduct a cleaning evaluation of the test products on soiled stainless-steel coupons. Prior to the application of a wet, organic soil, the coupons were weighed and the weight recorded. The soiled coupons were allowed to dry at ambient room temperature for 24 hours. Each test product was sprayed onto the coupons in such a quantity to allow for the entire surface of the coupon to be covered with the test product. Again, the coupons were air dried at room temperature for 24 hours.

After the drying process was completed, the coupons were mounted onto the washer rack and washed in the Reliance® 444 Single-Chamber Washer/Disinfector on the Instrument Cycle. The Instrument Cycle consists of a pre-wash for two minutes, a wash for two minutes (no detergent used) at 150°C (302°F) and a first rinse for 15 seconds. After the first rinse, the coupons were removed and allowed to dry at room temperature for 24 hours. After drying, the weight of the coupons was measured and recorded. The average soil left on the coupons after cleaning in the Reliance 444 Single-Chamber Washer/Disinfector was obtained for each sample.

RESULTS
The visual inspection of the coupons treated with PRE-Klenz Instrument Transport Gel did not reveal any gross soil material or stains on the coupons. The coupons treated with ProEZ Foam, Instra-Clean Instrument Detergent and Prepzyme showed tiny patches and staining throughout the surface. Figure 1 depicts the cleaning results of the four test products.

¹ Prepzyme® is a registered trademark of Ruhol Corporation.
² ProEZ Foam™ is a trademark of Certol International.
CONCLUSION

Based on the results of the cleaning evaluation, PRE-Klenz Instrument Transport Gel was found to have superior cleaning performance as compared to the competitive cleaning products.

Reference

For further information, please contact:

STERIS®
STERIS Corporation
5960 Heisley Road
Mentor, OH 44060-1834 • USA
440-354-2600 • 800-548-4873
www.steris.com

This document is intended for the exclusive use of STERIS Customers, including architects or designers. Reproduction in whole or in part by any party other than a Customer is prohibited.
SAFETY DATA SHEET

1. Identification of the Substance and Company

PRE-Klenz™
Instrument Transport Gel
Product No. 1503 & 20D2

NFPA 704 HAZARD RATING:

<table>
<thead>
<tr>
<th>HEALTH</th>
<th>FIRE</th>
<th>REACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prepared by: M. Ebers
asksteris_msdss@steris.com
Date Created: December 1, 2001 Date Revised: November 2, 2012 Date Reviewed: NA

STERIS Corporation, P. O. Box 147, St. Louis, MO 63166, US
Emergency Telephone No: 1-314-535-1395 (STERIS); 1-800-424-9300 (CHEMTREC)
Telephone Number for Information: 1-800-548-4873 (Customer Service-Healthcare Products)

STERIS Limited, Chancery House, 190 Waterside Road, Hamilton Industrial Park, Leicester, LE5 1QZ, UK
Emergency Phone No: +44 (0) 1895 622 639
Product/Technical Information Phone No: +44 (0) 116 276 8636

2. Hazards Identification: NA

3. Composition/Information on Ingredients

<table>
<thead>
<tr>
<th>Hazardous Component(s)</th>
<th>% By Wt.</th>
<th>CAS No.</th>
<th>EU No.</th>
<th>Symbol</th>
<th>R Phrases</th>
<th>Oral LD50</th>
<th>LC50</th>
</tr>
</thead>
</table>

According to the Controlled Products Regulations, this product contains no hazardous ingredients.

None of the ingredients falls into any classification required under the CHIP Regulations at the concentrations present.

4. First Aid Measures

Eye Contact: Immediately flush eyes with plenty of water for at least 15 minutes. If irritation develops contact a physician.

Skin Contact: Immediately flush skin with plenty of water for at least 15 minutes. Contact a physician if irritation persists.

Inhalation: Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen and call a physician.

Ingestion: If swallowed, Do NOT induce vomiting. Give large quantities of water. Call a physician immediately. Never give anything by mouth to an unconscious person.

5. Fire-Fighting Measures

Conditions of Flammability/Flash Point/Autoignition Temperature: ND Method: NA

Upper Flammable Limit: ND Lower Flammable Limit: ND

Flammability Classification: NA

Special Hazards: None known. Explodability Data: ND

Extinguishing Media: Product is not flammable or combustible.

Special Fire Fighting Procedures: None known.

Hazardous Combustion Products: None known

6. Accidental Release Measures

Spills may be picked up with a mop and followed by a water rinse. Small spills may be flushed to a sanitary sewer with copious amounts of water.

7. Handling and Storage

7.1 Handling

Avoid breathing spray mists. Read and follow all labeled directions.
Appropriate personnel protective equipment should be worn in accordance with OSHA Bloodborne Pathogen Guidelines when handling soiled instruments.

7.2 Storage
Store in a cool place to maintain product integrity. Keep out of reach of children.

8. Exposure Control/Personal Protection
8.1 Occupational Exposure Limits
No chemical is present that requires statutory controls.

8.2 Personal Protection
Respirator Protection: NA
Eye Protection: Safety glasses are recommended.
Protective Gloves: Rubber gloves are recommended.
Other Protective Clothing and Equipment: NA
Engineering Controls/Ventilation: Normal room ventilation.

9. Physical and Chemical Properties
Solubility in Water: Complete Specific Gravity: 1.03
Physical State/Appearance/Odor: Slightly hazy, viscous light straw liquid/floral citrus scent.
pH: ~ 7.0
Odor Threshold, Vapor Pressure, Vapor Density, Evaporation Rate, Boiling Point and Freezing Point: ND
Coefficient of Water/Oil Distribution: ND

10. Stability and Reactivity
Incompatible Materials: None known.
Conditions to Avoid/Conditions of Reactivity: None known.
Hazardous Decomposition or Byproducts: None known.

11. Toxicological Information
11.1 Acute (Primary Routes of Exposure)
Eyes (Irritancy): Product is not expected to be irritating to the eyes. Acute eye Irritation (rabbit) = 0.
Skin (Irritancy or Sensitization): Product is not expected to be irritating to the skin. Primary Dermal Irritation (rabbit) = 0.
Inhalation: Product is not expected to be irritating by inhalation.
Ingestion: Product is not expected to be toxic through ingestion. Oral LD50 (rat) >5000 mg/kg

11.2 Long Term Exposure: None known.
Carcinogenicity: IARC, NTP and OSHA do not list this product or its ingredients as carcinogens.
Reproductive Toxicity/Teratogenicity/Mutagenicity/Toxicologically Synergistic Products: ND

12. Ecological Information: Product is ready biodegradable as per OECD Method 301B. The surfactant contained in this preparation complies with the biodegradability criteria as laid down in Regulation (EC) No. 648/2004 on detergents. Data to support this assertion are held at the disposal of the competent authorities of the Member States and will be made available to them, at their direct request or at the request of a detergent manufacturer.

13. Disposal Considerations: Federal, state and local disposal laws and regulations will determine the proper waste disposal procedure.

14. Transport Information
Ground: Shipping Name: Non-hazardous Hazard Class: NA
Sea: IMDG Class: Non-hazardous Air: ICAO/IATA Class: Non-hazardous

15. Regulatory Information
USA State Regulations: May contain trace amounts of chemicals found on the California Prop. 65 list.
This preparation is not classified as dangerous for supply as defined by the UK Chemicals (Hazard Information and Packaging for Supply) Regulations 1994.
This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the SDS contains all of the information required by the Controlled Products Regulation.

16. Other Information: The information on this sheet is not a specification and does not guarantee specific properties. The information is intended to provide general knowledge as to health and safety based upon our knowledge of the handling, storage and use of the product. It is not applicable to unusual or non-standard uses of the product or where instructions or recommendations are not followed.

NA - Not Applicable ND - Not Determined